Echinococcus granulosus: Variability of the host-protective EG95 vaccine antigen in G6 and G7 genotypic variants

Conan Chow a,1, Charles G. Gauci a, Gulay Vural b, David J. Jenkins c, David D. Heath d, Mara C. Rosenzvit e, Majid Fasihi Harandi f, Marshall W. Lightowlers a,∗

a University of Melbourne, Veterinary Clinical Centre, Princes Highway, Werribee, Vic. 3030, Australia
b Veterinary Control and Research Institute, Pendik 81480, Istanbul, Turkey
c Hydatid Epidemiology and Control Program, 12 Mildura Street, Fyshwick, ACT 2609, Australia
d Wallaceville Animal Research Centre, AgResearch, Upper Hutt, New Zealand
e Departamento de Parasitologia, Instituto Nacional de Enfermedades Infecciosas, ANLIS “Dr. Carlos G. Malbrán” Av. Velez Sarsfield 563, Buenos Aires (1281), Argentina
f Department of Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman, P.O. Box 444, Iran

Received 19 November 2007; received in revised form 20 January 2008; accepted 28 January 2008
Available online 2 February 2008

Abstract

Cystic hydatid disease in humans is caused by the zoonotic parasite Echinococcus granulosus. As an aid to control transmission of the parasite, a vaccine has been produced for prevention of infection in the parasite’s natural animal intermediate hosts. The vaccine utilizes the recombinant oncosphere protein, EG95. An investigation into the genetic variability of EG95 was undertaken in this study to assess potential antigenic variability in E. granulosus with respect to this host-protective protein. Gene-specific PCR conditions were first established to preferentially amplify the EG95 vaccine-encoding gene (designated eg95-1) from the E. granulosus genome that also contains several other EG95-related genes. The optimized PCR conditions were used to amplify eg95-1 from several parasite isolates in order to determine the protein-coding sequence of the gene. An identical eg95-1 gene was amplified from parasites showing a G1 or G2 genotype of E. granulosus. However, from isolates having a G6 or G7 genotype, a gene was amplified which had substantial nucleotide substitutions (encoding amino acid substitutions) compared with the eg95 gene family members. The amino acid substitutions of EG95 in the G6/G7 genotypes may affect the antigenicity/efficacy of the EG95 recombinant antigen against parasites of these genotypes. These findings indicate that characterization of eg95 gene family members in other strains/isolates of E. granulosus may provide valuable information about the potential for the EG95 hydatid vaccine to be effective against E. granulosus strains other than the G1 genotype.

© 2008 Elsevier Inc. All rights reserved.

Index Descriptors and Abbreviations: Echinococcus granulosus; Cestode; Host-protective antigen; Vaccine; Gene family; Gene expression; DNA, deoxyribonucleic acid; cDNA, complementary DNA; PCR, polymerase chain reaction; UTR, untranslated region; RNA, ribonucleic acid; mRNA, messenger RNA; bp, base pair(s); kbp, kilobase pairs

1. Introduction

Echinococcus granulosus is a cestode parasite that causes cystic hydatid disease in humans. Transmission of E. granulosus occurs through a variety of animal intermediate hosts, particularly domesticated livestock. A vaccine has been developed for use in animal intermediate hosts of the parasite and it has been shown to be effective in reduction of hydatid disease infection in vaccinated sheep (Lightowlers et al., 1996; 1999). The vaccine is based upon a single recombinant antigen, designated EG95, which is encoded by a cDNA derived from the oncosphere stage of E. granulosus (Lightowlers et al., 1996). The EG95 vaccine is encoded by a gene (eg95-1) that belongs to a small
family of related genes (Chow et al., 2001). *E. granulosus* occurs as several distinct genotypes or strains (G1–G9) worldwide (Thompson and McManus, 2002). The sheep/G1 *E. granulosus* strain from which the EG95 gene family was characterized consists of at least seven EG95-related genes encoding the EG95 protein and two other related proteins. Thus far, only the EG95-1 protein has been shown to be host-protective while the protective efficacy of the two other related proteins (EG95-5 and EG95-6) is yet to be determined. Future practical use of the vaccine may be affected by antigenic variability of the EG95 protein expressed in the infective oncosphere stage. The use of a vaccine based on a single recombinant antigen (EG95) may select for antigenically variant parasites that are unsusceptible to the vaccine, however this problem could be circumvented by monitoring the parasite population for antigenic variants and modifying the vaccine as appropriate (Lightowlers et al., 2003).

Here, we devise a strategy to investigate genetic variability of the EG95 protein in different isolates/genotypes of *E. granulosus*. Gene-specific PCR primers were used to amplify only the EG95-1 (vaccine) encoding gene (as distinct from amplification of all the EG95-related genes) from parasite genomic DNA and the DNA sequence determined for the associated antigen. Genetic variability of the eg95-1 gene was assessed in several isolates of *E. granulosus* including representatives of different recognized strains of *E. granulosus*.

2. Materials and methods

The genotype of various *E. granulosus* isolates was determined according to the techniques described by Bowles et al. (1992). This technique utilises sequence variation in the cytochrome c-oxidase 1 (*cox1*) gene to distinguish different *E. granulosus* strains/genotypes. Total nucleic acids were extracted from isolates of *E. granulosus* (Table 1) using previously described techniques (McManus et al., 1985). The samples were subsequently used in PCR to amplify the *cox1* gene and the DNA sequence was determined using an ABI PRISM BigDye Terminator sequencing kit and an Applied Biosystems 3730S capillary sequencing system. Sequence data were analyzed using MacVector (Accelrys Inc.). The *E. granulosus* genotypes identified by *cox1* sequence are shown in Table 1. Four Argentine *E. granulosus* isolates were determined to be G1, G2, G6 and G7 genotypes.

Cloned genomic DNA was used to establish PCR conditions that specifically amplify the eg95-1 gene and not any of the other eg95 gene family members. Primers that amplify the entire eg95-1 gene were not expected to be eg95-1 gene-specific since several eg95 gene family members share high nucleotide sequence homology with eg95-1 (Chow et al., 2001). However, the eg95-1 sequence contains regions in its introns and non-coding sequence that differ from the other gene family members (Chow et al., 2001). These DNA sequence differences enabled gene-specific PCR primers to be designed. Hence, one primer pair was predicted to amplify exon 1 and the other pair to amplify exons 2 and 3. Fig. 1A shows a schematic representation of the chosen primer annealing sites and the expected size of the PCR product for each primer combination. PCR conditions leading to specific amplification of cloned eg95-1 were determined prior to PCR being performed with parasite genomic DNA. PCR amplification of the

<table>
<thead>
<tr>
<th>Isolate designation</th>
<th>Genomic DNA source</th>
<th>Host</th>
<th>Origin</th>
<th>cox1 Genotype</th>
<th>Homology to all the protein-coding regions of eg95-1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA1</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Australia</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>SCA2</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Australia</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>SCA3</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Australia</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>SCA4</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Australia</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>SCA5</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Australia</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>SCA6</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Australia</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>MCA1</td>
<td>px-mc</td>
<td>Sheep</td>
<td>Australia</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>MCC1</td>
<td>px-mc</td>
<td>Sheep</td>
<td>China</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>MCK1</td>
<td>px-mc</td>
<td>Sheep</td>
<td>Kenya</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>MCA1</td>
<td>px-mc</td>
<td>Sheep</td>
<td>Argentina</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>MCA2</td>
<td>px-mc</td>
<td>Sheep</td>
<td>Argentina</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>AWNZ1</td>
<td>Aw</td>
<td>Sheep</td>
<td>New Zealand</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>G1A</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Argentina</td>
<td>G1</td>
<td>100</td>
</tr>
<tr>
<td>G2A</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Human</td>
<td>G2</td>
<td>100</td>
</tr>
<tr>
<td>G6A</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Argentina</td>
<td>G6</td>
<td>97.5</td>
</tr>
<tr>
<td>G7A</td>
<td>Px-sc</td>
<td>Sheep</td>
<td>Argentina</td>
<td>G7</td>
<td>97.5</td>
</tr>
</tbody>
</table>

Note: px-sc, protoscoleces from an individual hydatid cyst; px-mc, protoscoleces pooled from several hydatid cysts; aw, adult worms. Parasite isolates were genotyped based on *cox1* gene sequence. PCR products were sequenced, the nucleotide sequence data analyzed for homology to the *cox1* gene and ascribed to different genotypes as designated by Bowles and McManus (1993). Nucleotide sequence variability of eg95-1 amplified from various *Echinococcus granulosus* isolates is shown in the far right column.

* Data for the gene amplified from these isolates is included based solely on these fragments being amplified using PCR primers which, according to the G1 genotype, were expected to amplify eg95-1 gene-specifically. The variant gene amplified from these two isolates has been referred to as eg95-a1 because it is not known if it represents a variant of eg95-1 or another family member, or an additional eg95 gene family member.
PCR reactions performed using primer pair B3 and B5 generated amplification in lane 8. Predictions based on the primers used (Figs. 1 and 2). The size of the PCR product (685 bp) was consistent with the 1.5% agarose gel, visualized using standard procedures (Sambrook et al., 1989) and Southern blot hybridised to the eg95 cDNA.

3. Results and discussion

Specific PCR amplification of eg95-1 was observed when cloned eg95 gene family members were used as PCR templates (Fig. 1B and C). A single band was produced in the PCR reaction in which the template comprised eg95-1. In comparison, no other DNA fragments were observed in lanes where PCR reactions used other cloned eg95 gene family members as templates. Longer exposures of Southern hybridisations did not reveal additional bands (not shown). The sizes of the products are consistent with those predicted from the primer annealing sites in the genomic DNA sequence of eg95-1. PCR products of 685 and 773 bp were amplified using primers B1, B2 and B3, B5, respectively (Fig. 1B and C). No amplification products were present in PCR reactions that contained no DNA template (Fig. 1, lane 9). No bands were present for PCR reactions that used unrelated DNA as a template (Fig. 1, lane 8).

The parameters determined above were used in PCR to amplify eg95-1 from genomic DNA obtained from various E. granulosus isolates (Table 1). Products of PCR reactions were analyzed by agarose gel electrophoresis (not shown) and Southern blot hybridisation using eg95 cDNA as a probe (Fig. 2). PCR products from a duplicate agarose gel were excised, purified using standard procedures (Sambrook et al., 1989) and sequenced (Sanger et al., 1977). A single DNA band was observed in PCR reactions using primer pair B1 and B2 and template comprising parasite genomic DNA from all 16 isolates (Fig. 2). Southern blot hybridisation/sequencing of the PCR products confirmed that eg95-related DNA fragments had been amplified (Fig. 2). Longer exposures of the Southern hybridisation membrane did not detect additional bands (not shown). The size of the PCR product (685 bp) was consistent with predictions based on the primers used (Figs. 1 and 2). PCR reactions performed using primer pair B3 and B5 generated a single band for fourteen of the sixteen E. granulosus isolates. Southern analysis/sequencing of the PCR products showed all 14 DNA fragments contained eg95-related sequence (Fig. 2). The size of the PCR product was consistent with that predicted (773 bp) from the primer annealing sites (Fig. 1).

Primers B3 and B5 did not amplify a product from genomic DNA of G6A and G7A isolates (Fig. 2), suggesting the eg95-1 nucleotide sequence of these parasites may be different at the primer annealing site(s). In order to determine if these parasites show sequence variation in exons 2 and 3 of eg95-1, an alternative gene-specific primer combination was used (Fig. 1A and D). This primer combination was predicted to generate a PCR product of 1159 bp. As with the other primer pairs, PCR conditions were established for gene-specific amplification of eg95-1 using the cloned eg95 gene family members as template. Conditions were identical to that described above (except for an annealing temperature of 67 °C) using the following primers; B4, 5'-CATATCGTAGAGGTGTAAGTC-3' and B5, 5'-AACATCGCAATCGCTGGTTTT-3'. PCR products were electrophoresed in a 1.5% agarose gel, visualized using standard procedures (Sambrook et al., 1989) and Southern blot hybridised to the eg95 cDNA.

A number of E. granulosus samples representing different genotypes were used in this investigation and multiple isolates were tested for the eg95-1 genotype. The DNA sequences of the PCR products that were amplified from DNA of 14 E. granulosus isolates were identical to the eg95-1 (Table 1). The eg95-1 gene was successfully amplified from each of these G1 isolates and no sequence variation was detected in the protein-coding regions (Table 1). These data suggest that the eg95-1 gene is relatively invariant throughout the G1 genotype. This is consistent with the observation that the EG95 vaccine has been found to be effective in sheep vaccination and challenge trials carried out in Australia, New Zealand, Argentina, Chile and China (Lightowlers et al., 1996, 1999, 2000, 2006; Heath et al., 2003). The genotype is not known for the parasites used for challenge experiments in these trials, although the parasites were obtained from locations where the G1 genotype predominates.

The eg95-1 gene was amplified from DNA of G2 genotype parasites. As with G1 parasites, no nucleotide variation was detected in the exons of this eg95-1 gene (Table 1). This lack of variability in the eg95-1 gene in DNA of
G2 parasites is consistent with the genotyping data of Bowles et al. (1992) and Bowles and McManus (1993) who found only a small amount of variation in \textit{cox1} and \textit{ND1} gene sequence between the G2 and the G1 genotype. The sequence of the PCR products amplified from DNA of parasite isolates G6A (GenBank Accession No. AH013645) and G7A (GenBank Accession No. AH013644) varied in comparison with the \textit{eg95-1} gene as well as the other gene family members (Table 1). A total of 12 nucleotide substitutions were apparent in these sequences compared to the coding region of \textit{eg95-1} and these encoded seven amino acid changes. The introns flanking these exons also showed several nucleotide substitutions compared to the intron sequence of \textit{eg95-1}. The DNA products amplified from genomic DNA of both the G6 and G7 isolates were identical in sequence (Table 1). For these reasons, the variant gene amplified from isolates G6A and G7A was designated \textit{eg95-a1}. The predicted genomic structure of these DNA sequences is more akin to \textit{eg95-1}, \textit{eg95-2}, \textit{eg95-3}, \textit{eg95-4}, \textit{eg95-5}, \textit{eg95-6} and \textit{eg95-7}, respectively. Lane 8, PCR reaction using unrelated genomic DNA as a template. Lane 9, PCR reaction did not contain DNA template. (E) PCR amplification of \textit{eg95-1} from \textit{E. granulosus} genomic DNA. Lanes 1–3, PCR reactions using genomic DNA as templates from the following \textit{E. granulosus} isolates: G1A, G6A and G7A, respectively. Lane 4, PCR reaction contained no DNA template. The sizes of PCR products approximated to those predicted on the basis of primer location shown in (A). The predicted sizes (base pairs) of the PCR products are shown on the right.

Fig. 1. PCR amplification of \textit{eg95-1}. (A) Location of primer combinations used in PCR to amplify \textit{eg95-1}. Schematic representing gene structure of \textit{eg95-1}. Black boxes represent exons. Unfilled boxes denote introns. Grey boxes indicate 5' and 3' UTR regions. Arrows (B1–B5) show the position of primers. Primer pair B1, B2 is predicted to amplify 685 bp of \textit{eg95-1}. Primer pair B3, B5 is predicted to amplify 773 bp of \textit{eg95-1}. Primer pair B4 and B5 is predicted to amplify 1159 bp of \textit{eg95-1}. (B and C) Southern blots of \textit{eg95-1} PCR products amplified with primers B1/B2 and B3/B5, respectively. Southern blots were probed with \textit{eg95} cDNA and washing conditions were performed at 0.1x SSC stringency. Lanes 1–9, PCR reactions. Lanes 1–7, PCR templates comprising the following cloned \textit{eg95} gene family members: \textit{eg95-3}, \textit{eg95-2}, \textit{eg95-4}, \textit{eg95-1}, \textit{eg95-5}, \textit{eg95-6} and \textit{eg95-7}, respectively. Lane 8, PCR template comprising unrelated DNA. Lane 9, PCR reaction contained no DNA template. (D) Southern blot of gene-specific PCR amplification of \textit{eg95-1} using primers B4 and B5. (D) Lanes 1–7, PCR reactions used \textit{eg95} gene family members as templates: \textit{eg95-3}, \textit{eg95-2}, \textit{eg95-4}, \textit{eg95-1}, \textit{eg95-5}, \textit{eg95-6} and \textit{eg95-7}, respectively. Lane 8, PCR reaction using unrelated genomic DNA as a template. Lane 9, PCR reaction did not contain DNA template. (E) Southern blot of \textit{eg95-1} PCR reactions using genomic DNA as templates from the following \textit{E. granulosus} isolates: G1A, G6A and G7A, respectively. Lane 4, PCR reaction contained no DNA template. The sizes of PCR products approximated to those predicted on the basis of primer location shown in (A). The predicted sizes (base pairs) of the PCR products are shown on the right.

G2 parasites is consistent with the genotyping data of Bowles et al. (1992) and Bowles and McManus (1993) who found only a small amount of variation in \textit{cox1} and \textit{ND1} gene sequence between the G2 and the G1 genotype.

The sequence of the PCR products amplified from DNA of parasite isolates G6A (GenBank Accession No. AH013645) and G7A (GenBank Accession No. AH013644) varied in comparison with the \textit{eg95-1} gene as well as the other gene family members (Table 1). A total of 12 nucleotide substitutions were apparent in these sequences compared to the coding region of \textit{eg95-1} and these encoded seven amino acid changes. The introns flanking these exons also showed several nucleotide substitutions compared to the intron sequence of \textit{eg95-1}. The DNA products amplified from genomic DNA of both the G6 and G7 isolates were identical in sequence (Table 1). For these reasons, the variant gene amplified from isolates G6A and G7A was designated \textit{eg95-a1}. The predicted genomic structure of these DNA sequences is more akin to \textit{eg95-1}, \textit{eg95-2}, \textit{eg95-3} and \textit{eg95-4} rather than the other gene family members. However, these PCR products contain protein-coding sequence that differed by 12 nucleotides or more in comparison with \textit{eg95-1} and other \textit{eg95} gene family members, respectively. DNA sequence was obtained from intron 1 which was amplified by both primer sets. The DNA sequence of both PCR products is identical in this region, suggesting the two amplification products are likely to represent the same gene. The identical \textit{eg95-a1} gene in the G6 and G7 parasites is consistent with the high degree of similarity that the two genotypes have in their \textit{cox1} and \textit{ND1} genes (Bowles et al., 1992; Bowles and McManus, 1993) as well as other molecular markers (Rosenzvit et al., 1999; Kamenetzky et al., 2002; Bartholomei-Santos et al., 2003). On the basis of the available data, it is not pos-
Possible to be certain if the sequence in these PCR products from G6/G7 parasites represents a variant of eg95-1 or another previously characterized gene family member, or an additional eg95-related gene. A comprehensive characterization of the EG95-related gene family is being undertaken for the G6/G7 genotypes.

Different restriction patterns were observed in Southern blots of G6 *E. granulosus* genomic DNA digested with EcoRI compared with the G1 genotype (Fig. 2C). At least three prominent eg95-1-related restriction fragments were observed for the G6 genotype (approximately 1–4 kb), indicating that the G6 eg95 gene family is likely to differ significantly from the gene family of the G1 genotype. This is consistent with the observation that eg95-a1 from G6 (and G7) isolates differ from eg95-1 of G1 origin. This may have important implications for practical use of the EG95 vaccine in regions where both genotypes are endemic. Further studies to elucidate the differences in the G6 eg95 gene family from the G1 strain are likely to require complete cloning of all the related genes from G6 genomic DNA.

The eg95-a1 gene encodes a protein, designated EG95-a1, that varies in comparison with the EG95-1 protein and polypeptides expressed by other eg95 gene family members (Fig. 3). The EG95-a1 and EG95-1 sequences differ by 7 amino acids. EG95-a1 differs from EG95-5 and EG95-6 by 32 and 31 amino acids, respectively, and, like EG95-1 also lacks a group of 7 amino acids. The protein encoded by eg95-a1 includes features that are predicted to occur in the proteins encoded by other eg95 gene family members. Despite these amino acid sequence differences, there is no alteration in the basic predicted characteristics shared by this protein and those expressed by the other eg95 gene family members (Fig. 3). These proteins are all predicted to contain hydrophobic amino- and carboxy-termini (Fig. 3) suggesting they may be secreted and membrane-bound (Markovics et al., 1994). All these proteins show features suggesting they are glycosylated including a high S/T content (Fig. 3) as well as several N-X-S/T sites (Fig. 3). The EG95-a1 polypeptide contains an additional N-X-S/T site compared to EG95-1. Minor changes in carbohydrate components of proteins may result in marked changes in biological function (Seitz, 2000) and this has potential implications for the biological function of the variant EG95-related protein detailed here. Secondary structure analysis was performed on EG95-a1 and EG95-1 using the Chou–Fasman algorithm (Chou and Fasman, 1978) (not shown). An additional beta sheet is predicted to be present in the secondary structure of EG95-a1 in comparison with EG95-1, as well as other regions of EG95-a1 being structurally different to EG95-1. If EG95-a1 represents a variant of EG95-1, then these putative secondary structure characteristics suggest the conformation of EG95-a1 would be different to that of EG95 which forms the basis of the current vaccine. The host-protective epitope(s) of EG95 are believed to be conformational (Woollard et al., 2000) and the changes in protein conformation of EG95-a1 might alter these conformational epitopes such that antigenic cross-reactivity with EG95 is reduced or eliminated. This may allow parasites expressing this protein to evade the anti-EG95 immune responses, thus rendering the parasite insusceptible to the immune responses against the current EG95 vaccine.
Host immune responses directed toward the EG95 vaccine would target the expressed product of four eg95 gene family members since they encode an identical EG95 protein (Chow et al., 2001). Should any one of these genes mutate in such a way that the resulting protein is no longer recognized by the anti-EG95 immune response, resistance might be conferred upon these antigenically variant parasites. Alternatively, the continued expression of the other genes encoding a protein identical to EG95 may still render the parasite susceptible to anti-EG95 responses. The studies undertaken here to assess the variation of one eg95 gene family member among different isolates of the parasite would form the basis upon which parasite antigenic variability can be monitored. A specific vaccination and challenge trial would be necessary to determine the effectiveness of the current EG95 vaccine to protect against G6 or G7 genotype parasites. Expression of EG95-a1 and production of a specific G6/7 vaccine could provide an effective strategy to overcome any diminution that might be observed in the effectiveness of the EG95-1 based vaccine for G6/7 parasites.

Acknowledgments

The work was supported with funds from the Australian National Health and Medical Research Council Grant 350279.

References

Lightowlers, M.W., Lawrence, S.B., Gauci, C.G., Young, J., Ralston, M.J., Maas, D., Heath, D.D., 1996. Vaccination against hydatidosis...
using a defined recombinant antigen. Parasite Immunology 18, 457–462.

